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Fully developed parallel flow in an annular region filled with a porous medium surrounding an electric
cable is investigated. The effects of buoyancy and MHD force as well as the heat generation due to Joule
heating and viscous dissipation are taken into account. The mixed convection seepage flow is analyzed
according to Darcy law and to Boussinesq approximation. Buoyancy effect is modelled by setting the iso-
flux wall temperature as the reference temperature. As a consequence of this choice, the local momentum
and energy balance equations and the boundary conditions can be written in a dimensionless form that
defines an initial value problem instead of a boundary value problem. The initial value problem is solved
both by an analytical series method and by numerical integration. The effect of the radially varying mag-
netic field on the fluid velocity and temperature distributions is analyzed. It is shown that a significantly
strong magnetic force tends to inhibit the flow even for a high hydrodynamic pressure gradient.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The effects of an external magnetic field on convection flows in
porous media has gained through the years an increasing attention,
as pointed out in the comprehensive review by Nield and Bejan [1].
The interest in this field is due to the wide range of applications
either in engineering and in geophysics, such as the optimization
of the solidification processes of metals and metal alloys, the study
of geothermal sources, the treatment of nuclear fuel debris, the
control of underground spreading of chemical wastes and pollu-
tants and the design of MHD power generators.

The analysis of hydromagnetic flows in porous media has been
the subject of several recent papers [2–14]. These investigations
can be considered as theoretical extensions of the deep knowledge
reached in the last decades regarding MHD effects in fluid dynam-
ics and convection heat transfer.

Most of the published papers on convection and porous media
under the action of a magnetic field deal with external flows and
consider cases such that the magnetic field is uniform. Kumari
et al. [3] employ the numerical Keller box method to study the
mixed convection in a porous medium around a vertical wedge.
The boundary layer equations are solved by these authors consid-
ering the Brinkman model with inertia term for momentum trans-
port and by taking into account both the effects of Joule heating
ll rights reserved.
and viscous dissipation in the energy balance. Chamkha and Quadri
[4] consider hydromagnetic natural convection from a horizontal
permeable cylinder and obtain a numerical solution of the non-
similar boundary layer problem by using a finite difference meth-
od. El-Amin [7] investigates external free convection from either a
horizontal plate or a vertical plate with uniform heat flux. The local
balance equations are written with reference to power-law fluid
flow in a porous medium, transformed introducing a similarity var-
iable and solved through a fourth-order Runge–Kutta method with
shooting technique. Postelnicu [8] analyzes simultaneous heat and
mass transfer by natural convection from a vertical flat plate with
uniform temperature in an electrically conducting fluid saturated
porous medium. This author uses the Darcy–Boussinesq model
including Soret and Dufour effects and solves numerically the sim-
ilar boundary layer equations.

An interesting research work on analytical solutions for MHD
effects in heat and momentum transfer involving either Newtonian
or non-Newtonian fluids has been recently performed by Hayat
and coworkers [10–12]. For instance, in Hayat et al. [10], the
authors obtain exact solution for the MHD pipe flow of a Burgers’
fluid in a porous medium by means of Fourier transform method.
These authors adopt a modified Darcy’s relationship and treat as
special cases Oldroyd-B, Maxwell, second grade and Navier–Stokes
fluid models. In a very recent paper, Khan et al. [11] treat incom-
pressible Oldroyd-B fluid transient flow in a porous duct of rectan-
gular cross-section, in the presence of an applied uniform magnetic
field normal to the flow direction.
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Fig. 1. Drawing of the vertical annulus.

Nomenclature

An; eAn;Bn;Gn series coefficients
B magnetic field
B0 constant magnetic field, Eq. (1)
Br Brinkman number, Eq. (11)
êh; êZ angular and axial unit vectors
g gravitational acceleration
g modulus of the gravitational acceleration
GðrÞ dimensionless function, Eq. (32)
Gr Grashof number, Eq. (11)
I electric current
k thermal conductivity of the fluid
K permeability
Keff effective permeability, Eq. (7)
Li2 Euler’s dilogarithm function
M Hartmann number, Eq. (8)
Nu Nusselt number, Eq. (18)
p pressure
P hydrodynamic pressure, pþ qgZ
qw heat flux at the internal wall
r dimensionless radial coordinate, Eq. (11)
R radial coordinate
R1 internal radius
R2 external radius
Re Reynolds number, Eq. (11)

t dimensionless temperature, Eq. (11)
T temperature
Tref reference temperature, Eq. (4)
Tw temperature of the external boundary
u; ~u dimensionless velocity, Eqs. (11) and (43)
um; ~um dimensionless average velocity, Eq. (20) and (43)
U velocity
U axial velocity component
Um average velocity in a transverse cross-section, Eq. (19)
Uref reference velocity, Eq. (13)
Z axial coordinate

Greek symbols
b volumetric coefficient of thermal expansion
c radial aspect ratio, Eq. (11)
DT reference temperature difference, Eq. (12)
g dynamic viscosity
h angular coordinate
K dimensionless parameter, Eq. (43)
l0 magnetic permeability of vacuum
N dimensionless parameter, Eq. (11)
q mass density
r electric conductivity of the fluid
/ porosity
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Bhadauria [13] analyzes the thermal instability of Brinkman
model flow in an electrically conducting fluid saturated porous
medium confined between two horizontal walls. The presence of
an applied vertical magnetic field and uniform rotation around a
vertical axis are considered.

In the present paper, we will study a physically conceivable sys-
tem sufficiently simple to be described by a completely analytical
solution of the governing equations. In the literature, the main va-
lue of analytical solutions is that they can be used as benchmarks
to test numerical codes designed to study actual industrial devices,
usually too complicated to be described by an analytical solution.
There is also a second important value of analytical solutions: their
simple and basic character allows one to investigate the funda-
mental aspects of a given physical phenomenon.

The aim of the present paper is to perform a study of combined
forced and free flow of an electrically conducting fluid in a vertical
annular porous medium surrounding a straight cylindrical electric
cable. For instance, a technical system that can be approximately
described according to this model is an electric cable surrounded
by moist soil, especially in the case where salt water is present.
The cable generates a transverse radially varying magnetic field
in the fluid and yields to the fluid saturated porous medium a uni-
form heat input through the internal boundary of the annulus.
Thus, the analysis will refer to an internal flow and to a non-uni-
form magnetic field. The Darcy–Boussinesq model is considered
and the non-linear equations will be solved both analytically with
a power series method and numerically by predictor–corrector
Adams method.

2. Mathematical model

Let us consider a fluid saturated vertical porous annulus with
internal radius R1 and external radius R2, that surrounds a very
long straight cable with radius R1 carrying a constant electric cur-
rent I (see Fig. 1). Let us assume that the cable is electrically insu-
lated and that the magnetic field created by the current I is not
appreciably modified by the feedback field induced by the fluid
flow in the porous medium. The fluid flow in the porous medium
is steady, laminar, parallel and fully developed, so that the seepage
velocity can be expressed as U ¼ UêZ , where êZ is the unit vector in
the axial direction Z. Biot–Savart law implies that the magnetic
field B generated by the electric current I is given by

B ¼ B0
R1

R
êh; B0 ¼

l0I
2pR1

; ð1Þ

where êh is the unit vector in the azimuthal direction h. The flow in
the porous medium is described according to Darcy law and the ef-
fect of buoyancy is considered through the Boussinesq approxima-
tion [1,15]. Therefore, the mass balance equation requiring U to be
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solenoidal implies that U ¼ UðRÞ, while the momentum balance in
the Z;R and h directions yields

g
K

U ¼ �rB2
0

/
R2

1

R2 U þ qbgðT � TrefÞ �
oP
oZ
; ð2Þ

oP
oR
¼ 0;

oP
oh
¼ 0; ð3Þ

where the hydrodynamic pressure P ¼ pþ qgZ is the difference
between the pressure p and the hydrostatic pressure �qgZ. Eq. (3)
imply that P ¼ PðZÞ. In analogy with Morton’s treatment [16],
the reference temperature Tref introduced in the buoyancy term is
chosen as the fluid temperature at the heated boundary R ¼ R1,
namely

Tref ¼ TjR¼R1
: ð4Þ

Note that the MHD body force appearing on the right hand side
of Eq. (2) is evaluated, as suggested by Nield [17], considering
the intrinsic velocity U=/ instead of the seepage velocity U. In fact,
according to the Dupuit–Forchheimer relation, the intrinsic
velocity is the ratio between the seepage velocity and the porosity
/.

The inner boundary of the porous medium, R ¼ R1, is subject to
a uniform wall heat flux qw due to the Joule heat generation inside
the electric cable. The outer boundary, R ¼ R2, is assumed to be iso-
thermal at temperature Tw. If the axial length of the annular porous
medium is much greater than R2, then it is reasonable to assume a
purely radial heat flow, i.e. a temperature field T depending only on
R. As a consequence, Eq. (2) implies that dP=dZ is independent of Z.
Then, the local energy balance in steady regime for the fluid satu-
rated porous medium can be expressed as

k
R

d
dR

R
dT
dR

� �
þ rB2

0

/2

R2
1

R2 U2 þ g
K

U2 ¼ 0: ð5Þ

The thermal boundary conditions are given by

�k
dT
dR

����
R¼R1

¼ qw; TðR2Þ ¼ Tw: ð6Þ

In Eq. (5), the second and the third term on the right hand side rep-
resent the Joule heating and the viscous dissipation contributions,
respectively.

Eq. (2) would suggest that the effect of the external magnetic
field may be dealt with by a proper definition of a radially varying
effective permeability [17],

Keff ¼ K 1þ rB2
0 R2

1K

g/R2

 !�1

: ð7Þ

However, if the heat generation contributions appearing in the en-
ergy balance Eq. (5) are non-negligible, then the effective perme-
ability is no more a convenient definition in order to deal with
the magnetic field terms in the balance equations. This circum-
stance is due to the /�2 term in the Joule heating contribution in-
stead of the /�1 term appearing in the definition of effective
permeability, Eq. (7). In other words, the present MHD flow prob-
lem cannot be reduced to an equivalent porous flow problem with
a properly defined effective permeability Keff and without MHD ef-
fects, except for the limiting case of negligible heat generation con-
tributions in the energy balance.

One can define a modified Hartmann number, M, such that

M2 ¼ rB2
0K

g/
: ð8Þ
Then, Eqs. (2) and (5) can be rewritten as

g
K

1þM2R2
1

R2

 !
U ¼ qbgðT � TrefÞ �

dP
dZ

; ð9Þ

k
R

d
dR

R
dT
dR

� �
þ g

K
1þM2R2

1

/R2

 !
U2 ¼ 0: ð10Þ
2.1. Definition of the modified Hartmann number for MHD Darcy flows

The governing parameter that determines the strength of the
magnetic effects on the velocity and temperature field is the mod-
ified Hartmann number M. More precisely, its definition given by
Eq. (8) is an adjustment for porous media of the classical definition
of Hartmann number given for clear fluids [18]. Eq. (8) points out
that a high value of M does not only imply a high magnetic field,
but also a fluid with high electric conductivity and low viscosity,
as well as a medium with a high permeability to porosity ratio.
Highly conductive fluids such as liquid metals yield large values
of the ratio r=g. On the other hand, the ratio K=/ strongly depends
on the structure of the solid matrix. If one refers to mercury around
20 �C, one has r=g � 109 X�1 N�1 [18]. The ratio K=/ can reason-
ably reach values of the order of 10�7 m2 [19]. As a consequence,
conditions may occur such that rK=ðg/Þ � 102 T�2. This means
that values of M of order 1 can be reached with B0 � 10�1 T that
is certainly a very strong magnetic field, although perfectly feasible
in practice. As it will be discussed in the following sections, a value
of M of order 1 is characteristic of an important MHD effect in
Darcy flow. Significantly higher values of M yield, in the flow prob-
lem under exam, to a system saturation. Indeed, the damping effect
of the magnetic field on the fluid velocity becomes so strong that
the fluid is almost brought to a rest state. Therefore, although
decidedly hard to be obtained in the laboratory, values of M such
as 8 or even 103 will be considered in the following discussion only
in order to evidence this saturation effect, i.e. in order to compare
these cases with the limit M !1.

2.2. Dimensionless quantities

Let us define the dimensionless quantities

r ¼ R
R1
; u ¼ U

Uref
; t ¼ T � Tref

DT
; c ¼ R2

R1
;

Gr ¼ q2bgDTKR1

g2 ; Re ¼ qUref R1

g
;

N ¼ Gr
Re
¼ qbgKDT

gUref
; Br ¼ gU2

ref R
2
1

kKDT
; ð11Þ

where DT and Uref are, respectively, the reference temperature dif-
ference and the reference velocity given by

DT ¼ qwR1

k
; ð12Þ

Uref ¼ �
K
g

dP
dZ

: ð13Þ

The dimensionless parameters Gr;Re and Br represent respectively
the modified Grashof, Reynolds and Brinkman numbers. It must
be mentioned that Eq. (11) implies that 1 6 r 6 c. On account of
Eqs. (11)–(13), the governing Eqs. (9) and (10) can be rewritten as

1þM2

r2

 !
u ¼ Nt þ 1; ð14Þ

1
r

d
dr

r
dt
dr

� �
þ Br 1þ M2

/r2

 !
u2 ¼ 0; ð15Þ
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while the first thermal boundary condition (6) yield

dt
dr

����
r¼1
¼ �1: ð16Þ

Eqs. (4) and (11) provide an additional constraint on the dimension-
less temperature t, namely

tð1Þ ¼ 0: ð17Þ

The input dimensionless parameters needed to solve Eqs. (14)–(17)
are: the porosity /, the Hartmann number M, the aspect ratio c, the
Brinkman number Br, the ratio N between the Grashof number Gr
and the Reynolds number Re.

The definition of the dimensionless temperature t given in Eq.
(11) contains the difference TðRÞ � TðR1Þ. In fact, the natural input
parameter is not the temperature TðR1Þ of the isoflux wall, but the
temperature Tw of the isothermal wall R ¼ R2. However, after hav-
ing determined the solution of Eqs. (14)–(17), the value of
TðR1Þ ¼ Tref can be easily obtained as TðR1Þ ¼ Tw � tðcÞDT .

It must be pointed out that the Brinkman number Br represents
an overall factor of the heat generation terms in the dimensionless
energy balance Eq. (15). Thus, the limit Br ! 0 determines the spe-
cial case where both the viscous dissipation effect and the Joule
heating contribution are negligible.

2.3. Nusselt number and flow rate parameter

The heat transfer from the heated boundary R ¼ R1 to the cooled
isothermal boundary R ¼ R2 is described through the Nusselt num-
ber defined as

Nu ¼ qwR1

k½TðR1Þ � Tw�
¼ � 1

tðcÞ : ð18Þ

Another technically interesting quantity is the ratio between the
average velocity in a transverse cross-section,

Um ¼
2

R2
2 � R2

1

Z R2

R1

URdR; ð19Þ

and the reference velocity Uref , namely

um ¼
Um

Uref
¼ 2

c2 � 1

Z c

1
ur dr: ð20Þ

The flow rate parameter um allows one to obtain the relation between
the average velocity Um and the vertical pressure gradient dP=dZ, as
shown by Eqs. (13) and (20). In fact, one easily obtains the relation

Um ¼ �
umK
g

dP
dZ

: ð21Þ
3. Solution procedure

3.1. Special cases

In the following limiting cases, closed form solutions of Eqs.
(14)–(17) exist.

3.1.1. Limit Br ! 0
If Br ! 0, i.e. if the internal heat generation effects are negligi-

ble, one obtains

tðrÞ ¼ � lnðrÞ; ð22Þ

uðrÞ ¼ r2

r2 þM2 ½1� N lnðrÞ�: ð23Þ
� A special subcase is forced convection flow ðN! 0Þ where
uðrÞ ¼ r2

r2 þM2 : ð24Þ

� Another special subcase is the limit of vanishing pressure gradi-
ent, dP=dZ ! 0. This limit corresponds to a flow driven only by
buoyancy force and by MHD body force, and represents the
MHD free convection regime,

lim
N!1

uðrÞ
N
¼ � r2 lnðrÞ

r2 þM2 : ð25Þ

� Finally, a third special subcase is represented by the limit of neg-
ligible MHD body force, M ! 0,

uðrÞ ¼ 1� N lnðrÞ: ð26Þ
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3.1.2. Limit N! 0
In forced convection regime, i.e. if N! 0;uðrÞ is still given by Eq.

(24), whatever is the value of Br, while tðrÞ is given by

tðrÞ ¼ � lnðrÞ � Br
/

Z r

1

�r3ð/�r2 þM2Þ
ð�r2 þM2Þ2

ln
r
�r

� �
d�r

¼ � lnðrÞ þ Br

4/ðM2 þ 1Þ

(
2½/þM2ð2/� 1Þ þ 2M2ðM2 þ 1Þ

� ð2/� 1Þ lnðMÞ� lnðrÞ �M2ðM2 þ 1Þ lnðM2 þ 1Þ
� ½1� /þ 2ð2/� 1Þ lnðrÞ� � ðM2 þ 1Þ½ðr2 � 1Þ/
þM2ð/� 1Þ lnðM2 þ r2Þ� �M2ðM2 þ 1Þð2/� 1Þ

� Li2 �
r2

M2

� �
� Li2 �

1
M2

� �� �	
; ð27Þ

where Li2ðzÞ is Euler’s dilogarithm function defined as [20],

Li2ðzÞ ¼
X1
n¼1

zn

n2 : ð28Þ

In the limit M ! 0, one obtains in this case

tðrÞ ¼ 1
4
½Brð1� r2Þ þ 2ðBr � 2Þ lnðrÞ�: ð29Þ
3.1.3. Limit M !1
An interesting limiting case is that of a very large MHD force.

This limit, in the dimensionless Eqs. (14)–(17), is mathematically
expressed as M !1. If one takes M !1 in Eq. (14), then one ob-
tains u ¼ 0, whatever is the value of N. Moreover, by substituting
u ¼ 0 in Eq. (15) and by considering the conditions (16) and (17),
one obtains the logarithmic profile of the dimensionless tempera-
ture tðrÞ given by Eq. (22). In other words, a very large magnetic
field forces the fluid to be at rest, even if a vertical hydrodynamic
pressure gradient is applied. As a consequence, no heat generation
either due to viscous dissipation or to Joule heating occurs in the
porous medium. Then, the annular porous layer around the cable
thermally behaves as a solid and the temperature field is that of
pure conduction.

3.2. The general power series solution

As a consequence of Eq. (14), the dimensionless governing Eqs.
(15)–(17) imply an initial value problem for the dimensionless
temperature t, namely

rt00ðrÞ þ t0ðrÞ þ BrGðrÞ½NtðrÞ þ 1�2 ¼ 0; ð30Þ
tð1Þ ¼ 0; t0ð1Þ ¼ �1; ð31Þ

where

GðrÞ ¼ r3ð/r2 þM2Þ
/ðr2 þM2Þ2

: ð32Þ
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In Eqs. (30) and (31), as well as in the following, primes are used to
denote differentiation with respect to r.

A convenient procedure to solve the initial value problem given
by Eqs. (30) and (31) is based on a power series expansion of tðrÞ
around r ¼ 1,

tðrÞ ¼
X1
n¼0

Anðr � 1Þn: ð33Þ

On account of Eq. (31), the coefficients A0 and A1 are easily obtained

A0 ¼ 0; A1 ¼ �1: ð34Þ

From Eq. (32), the power series expansion of GðrÞ around r ¼ 1 is gi-
ven by

GðrÞ ¼
X1
n¼0

Gnðr � 1Þn; ð35Þ

where

G0 ¼
M2 þ /

/ðM2 þ 1Þ2
; G1 ¼

3M4 þ ð5/� 1ÞM2 þ /

/ðM2 þ 1Þ3
;

G2 ¼
M2½3M4 þ 2ð5/� 4ÞM2 � 2/þ 1�

/ðM2 þ 1Þ4
;

G3 ¼
M2½M6 þ 5ð2/� 3ÞM4 � 5ð4/� 3ÞM2 þ 2/� 1�

/ðM2 þ 1Þ5
; . . . ð36Þ

By substituting Eqs. (33) and (35) into Eq. (30), one obtains a recur-
sive relation for the coefficients An with n P 2,

Anþ2 ¼ �
nþ 1
nþ 2

Anþ1 �
Br

ðnþ 1Þðnþ 2Þ

� N2
Xn

j¼0

Gn�j

Xj

i¼0

AiAj�i

 !"
þ 2N

Xn

j¼0

Gn�jAj þ Gn

#
: ð37Þ

The first coefficients obtained through this recursive relation are

A2 ¼
1
2
ð1� BrG0Þ; A3 ¼

1
6
½2BrðNþ 1ÞG0 � BrG1 � 2�;

A4 ¼
1

24
fBr½2BrNG2

0 � 2ðNþ 1ÞðNþ 3ÞG0

þ ð4Nþ 3ÞG1 � 2G2� þ 6g; . . . ð38Þ

Higher order coefficients can be obtained by applying iteratively the
recursive relation Eq. (37). Then, the dimensionless velocity, the
Nusselt number and the flow rate parameter are given by

uðrÞ ¼ r2

r2 þM2 1þ N
X1
n¼0

Anðr � 1Þn
" #

; ð39Þ

Nu ¼ �
X1
n¼0

Anðc� 1Þn
" #�1

; ð40Þ

um ¼
2

c2 � 1
B0 þ N

X1
n¼0

AnBn

 !
; ð41Þ

where on account of Eq. (20), the coefficients Bn are defined as

B0 ¼
1
2

M2 ln
M2 þ 1
M2 þ c2

 !
þ c2 � 1

" #
;

B1 ¼
1
6

3M2 2M arctan
c
M

� �
� 2M arctan

1
M

� �
� ln

M2 þ 1
M2 þ c2

 !" #(

�ðc� 1Þð6M2 � 2c2 þ cþ 1Þ
)
; . . . ; Bn ¼

Z c

1

r3ðr � 1Þn

r2 þM2 dr:

ð42Þ
3.3. The power series solution in the special case N!1

When the pressure gradient vanishes, i.e. dP=dZ ! 0, one has a
flow driven only by buoyancy force and by MHD body force. In Sec-
tion 3.1, this flow has been called MHD free convection regime.
When dP=dZ ! 0 or N!1, one may infer that
tðrÞ;uðrÞ=N;BrN2;Nu and um=N tend to a finite limit. The series
solution procedure described in Section 3.2 can still be applied.
Let us introduce the quantities

K ¼ BrN2; ~uðrÞ ¼ uðrÞ
N

; ~um ¼
um

N
: ð43Þ

Then, when N!1, Eq. (30) simplifies to

rt00ðrÞ þ t0ðrÞ þKGðrÞtðrÞ2 ¼ 0: ð44Þ

It is easily shown that, in the limit N!1, one has

tðrÞ ¼
X1
n¼0

eAnðr � 1Þn; ð45Þ

~uðrÞ ¼ r2

r2 þM2

X1
n¼0

eAnðr � 1Þn; ð46Þ

Nu ¼ �
X1
n¼0

eAnðc� 1Þn
" #�1

; ð47Þ

~um ¼
2

c2 � 1

X1
n¼0

eAnBn; ð48Þ

where the coefficients eAn are evaluated through the relationseA0 ¼ 0; eA1 ¼ �1;

eAnþ2 ¼ �
nþ 1
nþ 2

eAnþ1 �
K

ðnþ 1Þðnþ 2Þ
Xn

j¼0

Gn�j

Xj

i¼0

eAi
eAj�i

 !
; n P 2:

ð49Þ

On account of Eq. (49), the coefficients eA2; eA3 and eA4 are given by

eA2 ¼
1
2
; eA3 ¼ �

1
3
; eA4 ¼

1
12
ð3�KG0Þ; . . . ð50Þ
3.4. Numerical solution

The initial value problem defined by Eqs. (15)–(17), can be also
solved numerically by employing, for instance, Adams method,
Euler’s method or Runge–Kutta methods. A convenient environ-
ment for these numerical solution procedures is function
NDSolve of software Mathematica (�Wolfram Research, Inc.).
This function allows one to specify the desired method for the
solution of the initial value problem or to accept the default opti-
mal choice made by Mathematica kernel [21]. In the following, the
numerical calculations are performed by choosing the predictor–
corrector Adams method.

4. Discussion of the results

The results discussed in the following have been obtained either
analytically or numerically through the function NDSolve of Math-
ematica. In the general case, the series solutions obtained in Sec-
tions 3.2 and 3.3 are used, by truncating the sums to the first 42
terms and adopting the Euler–Knopp algorithm for enhancing the
convergence rate of the series [22]. This truncation ensures a satis-
factory convergence in all the cases examined. A comparison be-
tween the analytical series solution and the numerical solution is
performed in Table 1 with reference to c ¼ 3;/ ¼ 0:5;Br ¼ 1;
M ¼ 2 and for different values of N in the range �0:6 6 N 6 1:6.
The tested quantities are the dimensionless flow rate parameter



Table 1
Comparison between analytical and numerical solution: values of um ;Nu;Dum=um and
DNu=Nu versus N, for c ¼ 3;/ ¼ 0:5;Br ¼ 1 and M ¼ 2

N um Nu Dum=um (%) DNu=Nu (%)

�0.6 1.0703 0.28025 �0.0006 0.0053
�0.4 0.84300 0.34902 �3:0� 10�5 3:2� 10�4

�0.2 0.66578 0.42020 �4:8� 10�7 7:6� 10�6

�0.01 0.52880 0.48827 �9:2� 10�11 1:1� 10�8

0.01 0.51575 0.49538 3:1� 10�11 2:2� 10�9

0.2 0.40183 0.56162 2:7� 10�10 1:6� 10�9

0.4 0.29729 0.62698 3:6� 10�9 1:4� 10�8

0.6 0.20335 0.68496 4:9� 10�8 1:1� 10�7

0.8 0.11586 0.73236 8:1� 10�7 9:9� 10�7

1.0 0.031311 0.76590 2:6� 10�5 8:2� 10�6

1.2 �0.053577 0.78243 �1:2� 10�4 6:0� 10�5

1.4 �0.14218 0.77934 �3:0� 10�4 3:7� 10�4

1.6 �0.23834 0.75495 �0.0011 0.002

Fig. 2. Special case N!1: plots of tðrÞ and ~uðrÞ for c ¼ 3;K ¼ 3 and / ¼ 0:5.

Fig. 3. Special case N!1: plots of tðrÞ and ~uðrÞ for c ¼ 3;M ¼ 2 and / ¼ 0:5.
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um and the Nusselt number Nu. In Table 1, the relative discrepan-
cies between analytically and numerically obtained values

Dum

um
¼ um½analytical� � um½numerical�

um½analytical� ; ð51Þ

DNu
Nu
¼ Nu½analytical� � Nu½numerical�

Nu½analytical� ; ð52Þ

are determined. A very good agreement between analytical and
numerical values of both um and Nu is found, the relative discrepan-
cies being less than 0:0053%. In the table, it is clearly shown that
the relative discrepancies Dum=um and DNu=Nu increase rapidly
with j N j. This is due to the loss of convergence rate of the power
series for high values of jNj. In the following analyses, both the
numerical solution and the power series solution will be used to ob-
tain and validate the results.

Table 1 shows that um is a monotonic decreasing function of N,
while Nu is a monotonic increasing function of N. This behavior re-
flects the effect of the buoyancy force. The latter is directed down-
ward at every position where the temperature is smaller than the
reference temperature TðR1Þ. In any case, every position in the por-
ous layer has a temperature lower than the temperature of the
internal boundary wall. In fact, even if internal heat generation is
very intense, i.e. if Br is high, the maximum temperature always
coincide with the reference value Tref ¼ TðR1Þ.

The behavior of um shown in Table 1 reveals that, for positive
values of N, buoyancy tends to inhibit the upward average flow
determined by the downward pressure gradient. Indeed, as stated
above, the buoyancy force acts in the downward direction. The
inhibition of upward flow, for sufficiently high positive values of
j N j, eventually produces an inversion of the average flow, from
upward to downward. The latter feature, is shown by the negative
values of um for N ¼ 1:2;1:4;1:6. A negative sign of um means that
the average flow occurs in the direction of increasing hydrody-
namic pressure P, as it can be easily inferred from Eq. (21).

4.1. The special case N!1

The limiting case N!1 corresponds to convective flow with
vanishing axial pressure gradient ðdP=dZ ! 0Þ. In the preceding
sections, this flow regime has been called MHD free convection re-
gime. As it has been shown in Section 3.3, the governing parame-
ters are in this case c;/;M and K.

Figs. 2 and 3 display plots of tðrÞ and ~uðrÞwith c ¼ 3 and / ¼ 0:5
either for a fixed K (Fig. 2, K ¼ 3) or for a fixed M (Fig. 3, M ¼ 2).
Fig. 2 shows that the dimensionless temperature differences tend
to decrease as M increases. The dimensionless velocity at every po-
sition tends to become smaller and smaller as M increases and be-
comes zero (fluid at rest) in the limit M !1. Fig. 3 displays the
effect of parameter K on the distributions tðrÞ and ~uðrÞ. This figure
clearly shows that the slopes of tðrÞ and ~uðrÞ at r ¼ 1 are indepen-



Fig. 5. Plots of tðrÞ and uðrÞ for c ¼ 3;/ ¼ 0:5;M ¼ 2 and N ¼ 1 (solid lines) or
N ¼ �1 (dashed lines).
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dent of K. As it has been already stressed, the definition of t
constrains tðrÞ to have a fixed slope at r ¼ 1 (see Eq. (16)). Eqs.
(14)–(17) and (43) reveal that, in the limit N!1, also ~u0ð1Þ is
independent of K, namely ~u0ð1Þ ¼ �1=ð1þM2Þ.

Fig. 4 shows the change of parameters ~um and Nu with M, for
increasing values of K. This figure reveals that an increasing value
of K, i.e. increasing effects of internal heat generation, implies
decreasing values of both ~um and Nu. In fact, a higher heat genera-
tion in the fluid produces larger temperature differences and, thus,
yields smaller values of Nu and more intense buoyant downflow
(smaller negative values of ~um). Fig. 4 shows once again the behav-
ior when M becomes very large: flow is progressively inhibited and
for M !1 the fluid is at rest. For K! 0, the dimensionless tem-
perature distribution is given by the logarithmic profile
tðrÞ ¼ � lnðrÞ; the Nusselt number is thus independent of M and
has the value Nu ¼ 1= lnðcÞ ¼ 1= lnð3Þ ffi 0:910239.

4.2. Combined effects of buoyancy and heat generation

In the general case, the parameters Br;N and M have finite non-
vanishing values. An example of this general condition is illus-
trated in Fig. 5 where plots of the dimensionless temperature t
and of the dimensionless velocity u are reported for
c ¼ 3;/ ¼ 0:5 and M ¼ 2. The behavior of t and u is analyzed for
different values of Br either in a case of upward hydrodynamic
pressure force �dP=dZ (the solid lines corresponding to N ¼ 1) or
in a case of downward hydrodynamic pressure force (the dashed
lines corresponding to N ¼ �1). Fig. 5 shows that the effect of the
internal heat generation due to both Joule heating and viscous dis-
sipation is stronger in the case of downward hydrodynamic pres-
sure force ðN ¼ �1Þ. This result is apparent by inspecting the
plots of dimensionless velocity and temperature. The physical rea-
son is that, when �dP=dZ > 0, buoyancy tends to contrast the up-
Fig. 4. Special case N!1: plots of ~um and Nu versus M, for c ¼ 3, / ¼ 0:5 and
increasing values of K.

Fig. 6. Plots of um and Nu versus N, for c ¼ 3;/ ¼ 0:5;M ¼ 2 and increasing values
of Br.
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ward flow induced by the hydrodynamic pressure force. As a con-
sequence, for a given value of j Uref j defined by Eq. (13), and hence
of Br, one has a smaller effect of heat generation than in the case
�dP=dZ < 0, due to the smaller local values of u2. On the other
hand, in the case �dP=dZ < 0, buoyancy and hydrodynamic pres-
sure force act in the same downward direction.

The combined effect of buoyancy and internal heat generation
on the Nusselt number Nu and the flow rate parameter um is
illustrated in Fig. 6. This figure shows that um has an important
dependence on Br only in the case of downward hydrodynamic
pressure force ðN < 0Þ. In this case, um is an increasing function
of Br. Moreover, for N < 0;um is an increasing function of j N j,
i.e. downflow is enhanced by buoyancy. In other words, for
N < 0, buoyancy and internal heat generation act synergically
in driving the fluid flow downward. It can be easily observed
that, for N! 0, all the curves of um corresponding to different
Br intersect with each other, since the dimensionless velocity is
not influenced by Br in this limit (forced convection). Fig. 6 also
shows that Nu is a decreasing function of Br. This behavior is a
well known feature of internal convective flows under conditions
of prescribed wall heat flux [23].
5. Conclusions

MHD mixed convection flow has been analyzed in an annular
region filled with a fluid saturated porous medium. The annulus
surrounds a cable carrying a stationary electric current that cre-
ates the magnetic field. Due to Biot–Savart law, the latter is a
transverse field with a radially decreasing module. The internal
boundary, i.e. the interface between the cable and the porous
medium, has been assumed to be an isoflux wall, while the
external boundary has been assumed to be isothermal. The fully
developed regime has been considered and the velocity field has
been assumed to be parallel. The momentum and energy balance
equations have been written according to Darcy law and Bous-
sinesq approximation, by taking into account both the effect of
Joule heating and that of viscous dissipation. For fixed values
of the radial aspect ratio and of the porosity of the solid matrix,
the balance equations written in a dimensionless form contain
three governing parameters: the Hartmann number M, the Brink-
man number Br and the ratio N ¼ Gr=Re between the Grashof
number and the Reynolds number. The most important results
obtained are the following.

� The buoyancy effect is analyzed by setting the fluid density next
to the isoflux boundary wall as the reference density. In this
way, the boundary value problem implied by the momentum
and energy balance equations is in fact transformed into an ini-
tial value problem with a unique solution for any given set of
values of the governing parameters.

� The magnetic field inhibits the fluid flow either in the case of
downward hydrodynamic pressure force or in the case of
upward hydrodynamic pressure force. As a consequence, the
flow rate parameter um, proportional to the ratio between the
average seepage velocity in a transverse cross-section and the
hydrodynamic pressure force �dP=dZ, is a decreasing function
of the Hartmann number. In the cases examined, no appreciable
flow rate exists for M J 10.

� In the limit N!1, no hydrodynamic pressure force acts on the
fluid, so that flow is driven only by buoyancy and magnetic force
(MHD free convection). In this limit, the average flow is down-
ward. The downward flow rate increases as the effect of heat
generation, due to both Joule heating and viscous dissipation,
becomes more and more important.

It must be pointed out that the shape of the velocity and tem-
perature profiles depend in general on the choice of the reference
temperature Tref . This is a common feature in the analysis of buoy-
ant flows. By making a choice of Tref , one defines exactly the
constant pressure gradient dP=dZ. Different choices of Tref

unavoidably imply a different meaning of the condition
dP=dZ ¼ 0. As a direct inference, different choices of Tref necessar-
ily lead to a different definition of the MHD free convection regime,
i.e. the limiting case N!1. Then, the conclusion that, when
dP=dZ ¼ 0, the average flow is downward obviously depends on
the choice of Tref as equal to the temperature on the isoflux bound-
ary. A different choice of Tref would have implied a different mean-
ing of the condition of MHD free convection regime and, as a
consequence, different flow features in this regime.
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